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1 ABSTRACT

Thecombined-load(compressionandshear)bucklingequationswereestablishedfororthotropicsandwichpan-
elsbyusingthe Rayleigh-Ritz method to minimize the panel total potential energy. The resulting combined-load

buckling equations were used to generate buckling interaction curves for super-plastically-formed/diffusion-bonded

titanium truss-core sandwich panels and titanium honeycomb-core sandwich panels having the same specific weight.

The relative combined-load buckling strengths of these two types of sandwich panels are compared with consider-

ation of their sandwich core orientations. For square and nearly square panels of both types, the combined load

always induces symmetric buckling. As the panel aspect ratios increase, antisymmetric buckling will show up when

the loading is shear-dominated combined loading. The square panel (either type) has the highest combined buckling

strength, but the combined load buckling strength drops sharply as the panel aspect ratio increases. For square pan-

els, the truss-core sandwich panel has higher compression-dominated combined-load buckling strength. However,

for shear dominated loading, the square honeycomb-core sandwich panel has higher shear-dominated combined load

buckling strength.

2 INTRODUCTION

Extensive explorative work has been carded out to find highly efficient (high stiffness, low specific weight)

hot structural panel concepts for application to hypersonic flight vehicles such as the National AeroSpace Plane

(NASP, refs. 1-12). The typical high-efficiency hot structural panels investigated hitherto are tubular and beaded

panels (refs. 1-11) made ofRen6 41, and sandwich panels with different core geometries, fabricated with superalloys

(e.g., titanium, Inconel 617 ®, Ren6 41). The face sheets of the sandwich panel may be either continous alloy or

metal-matrix composites (e.g., silicon carbide/titanium metal-matrix composites, ref. 12).

During applications (or services), the hot structural panel will be subjected to combined loading induced by

aerodynamic and thermal loadings. Therefore, the critical requirement for those hot structural panels is the high

buckling strength. The buckling behavior of tubular and beaded panels has been studied extensively theoretically

and experimentally (refs. 9-11). References 13 and 14 report some results of the compressive buckling behavior of

truss-core and honeycomb-core sandwich panels.

Because these two types of sandwich panels could be good candidates for applications to the NASE it is important

to understand the relative structural performances of those two panels under the combined loadings. This report

compares the buckling strengths of the truss-core and honeycomb-core sandwich panels of identical specific weight

subjected to combined compressive and shear loadings.

3 NOMENCLATURE

A'tnB

a

ij
arab

Bran

b

Cmn

c

Fourier coefficient of trial function for w, in

length of sandwich panel, in

coefficients of characteristic equations

Fourier coefficient of trial function for "/x, rad

horizontal projected length of corrugation leg excluding the flat segments, in

Fourier coefficient of trial function for "/v, rad

width of sandwich panel, in

®Inconel is a registered trademark of Huntington Alloy Products Division, International Nickel Company, Huntington, WV.



D:_ , D_I

D_v

DF, D_,DHz

d

E_

E_, E_v, E_,

E_, Ev

f

G¢

Gczv, Gcvz, _czx

h

h¢

L

L

i

/

k_

flexural stiffness parameter, _ D_.D w in-lb

transverse shear stiffnesses in planes parallel and normal to the corrugation
axis (z-axis), lb/in-rad

longitudinal and transverse panel flexural stiffnesses, in-lb

panel flexural stiffnesses, in-lb

panel twisting stiffness, in-lb

nondimensional parameters that are functions of truss-core geometric parameters

one half the length of straight diagonal segment of corrugation leg, in

Young's modulus of sandwich core material, lb/in z

effective Young's modulii of honeycomb core, lb/in z

Young's modulii of face sheets, lb/in 2

length of flat horizontal region of corrugation leg, in

shear modulus of sandwich core material, lb/in 2

effective shear modulii of honeycomb core, lb/in 2

shear modulus of face sheets, lb/in 2

depth of sandwich panel = distance between middle planes of two face sheets, in

depth of corrugation = vertical distance between center lines of upper and lower

flat segments of corrugation leg, he = h - t_ - t f, in

depth of honeycomb core, h'_= h - ts, in

moment of inertia, per unit width, of truss-core sheet of thickness

to Ic = ]J2-tc 3 , in 4/in

moment of inertia, per unit width, of truss-core cross section taken with respect to the

horizontal centroidal axis of the corrugation cross section, in4fin

moment of inertia, per unit width, of corrugation leg flat region of thickness tf,

If = _-_tf 3 ,
.I

in 4 fin

moment of inertia, per unit width, of two face sheets, taken with respect to horizontal

It h 2+lt 3 in 4/incentroidal axis (neutral axis) of the sandwich panel, I. = 2- • _ " '

index, 1,2,3 ....

index, 1,2,3 ....

compressive buckling load factor, kz =
7rz/9*

shear buckling load factor, k:_v =
7rz/9*

length of corrugation leg, in

bending moment intensities, in-lb/in

twisting moment intensities, in-lb/in



m

N_, N_

Nzy

n

P

R

R_

Rzy

tc

tf

ts

V

V1

V2

w

X, y, Z

"1_,%

6mnij

0

Pc

Pcxy, Pcyz, lJcxz

l)xy, Pyx

PHC

PTi

number of buckle half waves in x-direction

normal stress resultants, lb/in

shear stress resultant, lblin

number of buckle half waves in v-direction

one half of corrugation pitch = half wave length of corrugation, in

transverse shear force intensities, lb/in

radius of circular arc regions of corrugation leg, in

compressive stress ratio, Rx - kx(pure compression)

kz v
shear stress ratio, R_ v = k:_v(pur e shear)

transverse shear stiffness parameter

thickness of straight diagonal segment, or circular arc regions of corrugation

leg, tc = ty_-_-_,
in

thickness of corrugation leg horizontal fiat segments, in

thickness of sandwich face sheets, in

total potential energy of sandwich panel, in-lb

strain energy of the sandwich panel, in-lb

work done by external loads, in-lb

panel deflection, in

rectangular Cartesian coordinates

thickness shear strains, rad

special delta function obeying m :_ i, n 5/j,

m :k i = odd, n+j = odd, 6._q = mni]
(m 2 _ i2)(n2 _ j2)

corrugation angle, tad

Poisson ratio of sandwich core material

Poisson ratios of honeycomb core

Poisson ratios of face sheets, also for sandwich panel

specific weight of honeycomb core, lb/in 3

specific weight of titanium material, lb/in 3

4 HOT STRUCTURAL PANELS

Figures 1 and 2 show titanium truss-core and honeycomb-core sandwich panels, respectively. The truss-core

sandwich panel may be fabricated by a superplastical-forming/diffusion-bonding process. The honeycomb-core

sandwich panel can be fabricated by an enhanced-diffusion bonding process which joins the two face sheets to the



honeycombcore(ref. 12).Tocomparethebucklingstrength,bothtypesof the sandwich panels have the same face

sheet thickness and same core depth. The thickness of the truss is adjusted so that the two types of panels will have

identical specific weight. The sandwich panels will be subjected to combined compressive and shear loadings as

shown in figure 3. For each type of panel, two cases of core orientations will be investigated. Namely, truss-core
orientation,

case 1 = corrugation axis parallel to Nz and

case 2 = corrugation axis perpendicular to N_;

honeycomb-core orientation,

case 1 = hexagon longitudinal axis parallel to Nz and

case 2 = hexagon longitudinal axis perpendicular to N_.

Y

Figure 1. Truss-core sandwich panel.

Figure 2. Honeycomb-core sandwich panel.
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Figure 3.
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Truss-core and honeycomb-core sandwich panels of the same specific weight under compression and

5 BUCKLING ANALYSIS

5.1 Panel Constitutive Equations

The sandwich panel constitutive equations (moment and shear equations, ref. 15) may be expressed as

0

Mx - 1 -- VxVVVz

(3)

Q z = DQ._ "Is (4)

Qv = DQv % (5)

where Ms and M v are the bending moment intensities, M_u is the twisting moment intensity, Qs and Qv are the

intensities of transverse shear resultants (fig. 4), w is the panel deflection, ,,/_ and "/v are the transverse shear strains,

v_ v and vvx are the panel Poisson ratios, Ds and D v are the flexural stiffnesses, D_ v is the twisting stiffness, and

DQs and DQv are the transverse shear stiffnesses. Ds, D v, Ds_, DQz, and DQv are defined in the appendix.



M_

Figure 4. Forces and moments acting on a differential element of a sandwich panel.

5.2 Panel Boundary Conditions

The sandwich panels will be assumed to be simply supported at four edges. Namely

w = Mx = % = 0 along x = 0,a

w= My='/_=0 along x=0,c

(6)

(7)

5.3 Energy Equations

The strain energy V1 produced by the moments M._, My, M_y (= My._), and the transverse shear forces Q_ and

Qy (fig. 4) may be written as (ref. 15)

a foafo¢ { Dx [0 (Ow )]2VI = _ 1 - u=yuy= -_z -_z -'ix

+ + _.)]i - u_yuy_

I -- /)xyVyx

D 2 2}+ Q_7_ + DQy'ly dxdy (8)

and the strain energy V2 produced by the external loads N._, Ny, Nxy, and q can be expressed as (ref. 15)

1 ° _ (°"'__ (°"_ _ N O,oO,,,]
Vz= 2fo fo -2qw+ Nx\ox] + Ny\oy ] +2 xuO x oyjdXdy (9)

Then, the total potential energy V of the sandwich system is given

V = V_+ V2 (1o)



For the present problem, q = N v = 0, and N:_ ---, -N_.

5.4 Rayleigh-Ritz Method

Because of the existence of the shear loading term Nxv 0,_ 0_N-'N appearing in equation (9), the Rayleigh-Ritz method
will be used to minimize the total potential energy V of the sandwich system to obtain the buckling equation for

combined loading.

To satisfy the simply-supported boundary conditions equations (6) and (7), the following trial functions for the

panel deflection w and the transverse shear strains % and "iv may be chosen (ref. 16)

to to

w= _ _Amr_sin ran-----_zsin nn__y___ (11)
C

ra=l n,=l

¢x_ to

% = _ y_ B,n. cos ranx sin nn___y (12)
a c

m=l n=l

to to

% _ Y_ C,n, sin mTrx tory= _ cos _ (13)
(z C

ra=l n=l

where Am,,, Bin,,, and C,,._ are the undetermined Fourier coefficients of the assumed trial functions for w, %, and

7v respectively, and m and n are the buckle half wave numbers in the x and Y direction. Substitution of equa-

tions (11) through (13) into equations (8) and (9) and then substitution of the resulting expressions of Vt and V2 into

equation (10), and applying the Rayleigh principle of minimizing V

OV OV OV
- - 0 (14)

OA,,,,, - OBm. OCt,,,,

one obtains three simultaneous characteristic equations for the determination of the combined buckling loads.

ForUm n = 0

'IT/'2 71"4 _ 71"2ka, y tO tO 12 13n k:_---_) A,n,_ + 32 _ E E 6ranqAq + a,n.B,n,_ + a,_,_Cmn 0 (15)
i=l j=l

OV _
ForBB--_ " - 0

21 22 23
amnAran + O.mnBmn + aranCmn = 0 (16)

OV _
For _ - 0

31 32 33
amnAmn + amnJ_ra n + amnVmn = 0 (17)

In equation (15), the buckling load factors k_ and kzv are respectively defined as

Nza 2 gx fi2

kx 7rZD , , /¢zv = 7r2D. (18)

where the flexural stiffness parameter D* is defined as

1 - vxvvvx
(19)



In addition,thespecialdeltafunction6m,_i/ appearing in equation (15) is defined as

mnij

Smnij = ( m2 _ i2) ( n2 _ j2 )

which obeys the conditions: m 5t i, n 7_i, m -t- i = odd, n -t- ] = odd.

The coefficients ijam,_ (i, j = 1, 2, 3) appearing in equations (15) through (17) are defined as follows

(20)

11 D: + (D:v_: + Duuzv + 2 Dzu) + D_amn =

[ '-12 21 Dz + _-(Dzu w + D_u_ + 2 D_)amn = amn = _

13 31 if9v + _( Dzvvz +/)vvz:l + 2 Dzu)O, mr t "- amrt -_ _

22 /)z + -- + Doz
aran = 2

23 32 1 (_.._) (___)a,,,. = a.,,. = T( D=v_=+ D_v=_ + D=_)

33 = _y + + Douarnn

(21)

(22)

(23)

(24)

(25)

(26)

In the previous

Dz - Dz , D v - Du (27)
1 -- zJzv_yz 1 -- l,/zltPyz

Solving for B,_,, and C,_,_ in terms of A,_. from equations (16) and (17), one obtains

23 31 21 33

Bmn = amnamn -- amnamn A (28)
a22 ^33 _ a23 a32 --ran

_21 -32 _22 -31

C_ = "m_"_" - "_""_"A_.
a 22 a 33 a23 .32
-mn-mn -mn_mn

(29)

Substitution of equations (28) and (29) into equation (15) yields a homogenous linear equation containing only
the panel deflection coefficient Am,,

MITIY/, tO tO

A,_,_ + E E 6m,_ij Aij = 0
i=1 j=l

where m :/i, n _ j, m 4- i = odd, n 4- i = odd, and

={171Mm,, = _- k=
a2 [ 12 + 23 31 _21 -33 x _13 [_21 _32 22 31 \

!1 amn( CLmnamn -- tLmnt_mn) + t_mnk UmnUmn -- amnamn)

7r 2 D* [ amn +

classical thin

plate theory term

a22 ^33 ^23 ^32
WIIItbVI,_I,_ -- _l,l, ly/t_Tr/.li

transverse sheer effect terms

(30)

}
(31)



Equation(30)formsasystemofaninfinitenumberofsimultaneousequationsassociatedwithdifferentvaluesof

m and n. For practical purposes, the number of these simultaneous equations may be cut off up to certain finite num-

bers if the convergency of the eigenvalue solutions reached the desired limit. Since m + n = odd and n 5: j = odd

is required in equation (20), we have ( m + i) + ( n+ j) = ( m + n) -t- ( i + j) = even. Thus, if m + n = even, then

(i + j) must also be even. Likewise, if m + n = odd, then (i + j) must also be odd. Therefore, there is no cou-

pling between even case and odd case in each equation written out from equation (30) for a particular set of (m,n}.

Namely, if the Am,_ term in equation (30) is for m + n = even (or odd), then the Aq term in the same equation must

be for (i ± j) = even (or odd) also. Thus, the simultaneous equations generated from equation (30) may be divided

into two groups which are independent of each other; one group in which m + n is even (i.e., symmetrical buckling),

and the other in which m + his odd (i.e., antisymmetrical buckling, refs. 17, 18). For the deflection coefficients Am,,

to have nontrivial solutions for given values of k: and c the determinant of the coefficients of the unknown Am,_

1 thus obtained will give the lowest buckling load factor/¢:_ as a function ofmust vanish. The largest eigenvalue

k_ and c Thus, a family of buckling interaction curves in the kz-kz_ space may be generated with c as a parameter.P
Representative characteristic equations (buckling equations) for 12 x 12 matrices written out from equation (30)

are shown respectively in equations (32) and (33) for the cases m + n = even and m + n = odd (refs. 17, 18).

m + n = even

All

M
rn= l,n=l

m= 1 ,n=3

m=2 ,n=2

"o1=3 ,n= 1

m= 1 ,_,-=5

rr_= 2 ,r_=4

rrl=3 ,_m-3

ra=4 ,n=2

¢n.=5,n= 1

m=3,n=5

rn=4 ,n=4

rn.=5,n=3

A13 A22 A31 A15 A24 A33 A42

4 8 8
0 _ 0 0 4--5 0 4-'3

4 8 8zv -_" 0 0 7 0 - 2-'5"

M22 4 20 36
k_ - 3- - _- 0 2-3- 0

8 8
o -2-3 o 7

__ 40 s
k_ - _- 0 - g_"

nxy - 3-'_" 0

72Symmetty -

A51 A35

0 0

0 0

20 4
-gY T

0 0

0 0

8 8
-_" y

0 0

M'42 40 120

kz_ - 27 - 147

kx_

A44 A53

16
o

225

16
3"-3 o

4
o 9-

16
3-3 o

16
-_9- 0

120
0 - 1-TT

144
4--9- o

8
o y

16
-2"-Y 0

_80 021

80
kzll -- 21

kxv

where the nonzero off-diagonal terms satisfy the conditions: m 5t i, n:/j, ra ± i = odd and n± j = odd.

=0

(32)

9



m + n = odd

AI2 A21 A14 A23 A32 A41 A16 A25 A34 A43 A52 A61

m= I ,n=2

m=2 ,n= 1

w't=1 ,n.=4

ra=2 ,n=3

m=3 ,n=2

rn= 4 ,n= l

vr,=1 ,rt=6

_'_=2,_=5

m=3 ,n=4

rrt=4 ,n=3

m=5,n=2

rr_=6 ,r_= l

0

8

-4-3"

4 8 20
0 --_- 0 6-'3"

4 4
o _- o -3-3" o

8 16 40
-7 o -22--3" o 2-7

36 4•y -_3" 0 -_" 0

s 4_y -7 0 -_-

_y - l-T3" 0

20-Yi-Symmetry

8 4
0 2"-5" 0 - 3-5"

8 20
2-'5 o g_ o

16 8
o -3-3 o -T_

72 4
3-3 o -7 o

72 4
o 3-3- o -_

16 40
--3-'_" 0 2")- 0

8 36
o -T5 o - 12--_

8 100
-5 o -4-_ o

144 8_y -'Tff- 0 -4-_

s
k_v - _ 0

2o-Ti"

kzv

=0

(33)

where the nonzero off-diagonal terms satisfy the conditions: m 5/i, n _ j, m + i = odd and n -4- j = odd.

Notice thatthe diagonal terms in the determinants(eq.(32),(33))come from the firstterm of equation (30),and

the second seriesterm of equation (30) givesthe off-diagonalterms of the determinants.

6 NUMERICAL RESULTS

6.1 Physical Properties of Panels

The titanium truss-core and titanium honeycomb-core sandwich panels analyzed have the following geometrical

and material properties.

10



Geometry:

Items

Truss-core Honeycomb-core

sandwich panel sandwich panel

a, in 24 24

b = ½(p - f), in 0.3294 - --

_c 1,2,3,4 1,2,3,4
a

b in 0.6589
d = co-o-_ ,

f, in 0

h, in 1.2 1.2

hc = h- G - ty, in 1.1412

h'c = h- ts, in 1.1680

e= f+ 2(d+ R0),in 1.3177

p = tahn--_,in O.6589

R, in 0

tc = tfcos 0, in 0.0134

ty, in 0.0268

to, in 0.0320 0.0320

0, deg 60

Material properties

The titanium material used for the sandwich panel face sheets and cores has the following properties

Ez = E v = Ec = 16 x 1061b/in 2

Gzv = Gc = 6.2 x 1061b/in 2

vz v= vvz = vc=0.31

Pr_ = 0.16 lb/in 3

11



Figure5. Corrugationlegof a truss core.

The effective elastic constants used for the titanium honeycomb cores are given in the following
For case 1 core orientation

E_

_czy

Gc_z

_C :wZ

_c_z

/Jc:_z

Pxc

= 2.7778 x 1041b/in 2

= 2.7778 x 1041b/in 2

= 2.7778 x 1051b/in 2

= 0.00613 lb/in 2

= 0.81967 x 1051b/in 2

= 1.81 x 1051b/in 2

= 0.658 x 10 -2

= 0.643 × 10 -6

= 0.643 X 10 -6

= 3.674 x 10-31b/in 3

For case 2 core orientation: subscripts z and r/are interchanged.

6.2 Convergency of Eigenvalue Solutions

To find the minimum number of simultaneous equations (written out from eq. (30)) required to yield sufficiently

accurate eigenvalue solutions, the order of determinants (eq. (32) and (33)) was gradually increased from order 4

12



untiltheeigenvaluessufficientlyconverged.Figure6,whichis theplotsoftable1,showstheconvergencybehavior
of ks_ (even and odd) with the increase of the order of matrices for a special case of ks = 0 and c = 1, for truss-core

sandwich panel of case 1 core orientation.

12

8

4

2

o

4

I I I I I I I I

5 6 7" 8 9 IO I I t_.

ORDER. OF D_TI'Ii_I_MII'--IAIqT

Figure 6. Convergency of shear buckling solutions with an increase of the order of matrix, ks = 0, c = 1.

Table 1. Convergency of ks_ for truss-core sandwich panel of case 1 core orientation.

Order of ks_, ksu,
determinant even odd

4 6.43 8.19

6 6.39 6.64

8 5.79 6.58

10 5.76 6.34

12 5.72 6.33

The values of kxv (even and odd) have sufficiently converged at order 12. Thus, in the actual calculations of ksv

for any given values of k_ and c_, the order of matrices was set to be 12 (eq. (32) and (33)).

13



6.3 Buckling Interaction Curves

Figures 7 through 10 show buckling interaction curves for the truss-core and honeycomb-core sandwich pan-

els of the same specific weight and of different core orientations, respectively. Both symmetric and antisymmetric

buckling cases are shown for different aspect ratios of the panels. For the square panels (c = 1 ), the antisymmetica
buckling interaction curves (broken curves) lay on the right hand side of the symmetric buckling interaction curves

without intersecting. For _ _> 2, the symmetric and antisymmetric curves intersect at certain combined loading

points at the shear dominated combined loading region. Figure 11 shows the comparison of the composite buck-

ling interaction curves for the two types of sandwich panels. Those composite buckling interaction curves were

constructed from figures 7 through 10 by combining portions of symmetric and antisymmetric buckling interaction

curves to give minimum combined buckling loads. For square panels (_ = 1) (any type), the core orientation has

no effect on the pure compressive and pure shear buckling strength of the panels, and has negligible effect on the

combined-load buckling strength of the panels. When the aspect ratio is increased, the effect of core orientation

becomes conspicuous. For square panels (_c = 1), the truss-core sandwich panels (any core orientation) have highera
buckling strength than the honeycomb-core sandwich panels (any core orientation) when the loading is compression

dominated combined loading. When the loading is shear dominated, the latter has the higher buckling strength. For

an aspect ratio greater than 1, the two cases of interaction curves of honeycomb-core sandwich panel practically lay
cbetween the two interaction curves for the truss-core sandwich panel. Figure 12 shows k_ plotted as a function of

for the two types of sandwich panels.

14
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Figure 7. Buckling interaction plots for truss-core sandwich panels of different aspect ratios. Nx is parallel to the

corrugation axis.
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Figure 8. Buckling interaction plots for truss-core sandwich panels of different aspect ratios. Nz is perpendicular to

the corrugation axis.
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specific weight.
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Figure 12. Comparison of compressive buckling strength of truss-core and honeycomb-core sandwich panels having

the same specific weight.
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It is seen that the value of k_ decreases sharply as the aspect ratio c is increased from c = 1 to c = 2.

Beyond c = 2, the rate of decrease of k_ with the increase in a_ becomes less severe. For compressive buckling
strength, the truss-core sandwich panel of case 1 core orientation has a higher value of k= than the honeycomb-core

sandwich panel for all the range of panel aspect ratio c. For case 2 core orientation, the former has a higher value

of k_ than the latter only up to c _ 2.1. Figure 13 shows similar plots for k=_. The rate of decrease of k=_ with

the increase in c is less severe as compared with the compressive buckling case (fig. 12). The honeycomb-core

sandwich panel has higher shear buckling strength only in the range of aspect ratio 1 < c < 1.5(case 1 core

orientation) or 1 < c < 1.25 (case 2 core orientation). Beyond c = 1.5, the truss-core sandwich panel with case 1

core orientation has higher shear buckling strength. Table 2 summarizes the values of k_ and k=_ for different panel

aspects ratios.
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Figure 13.
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Comparison of shear buckling strength of truss-core and honeycomb-core sandwich panels having the

same specific weight.
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Table2. Bucklingloadfactorsfor truss-coreandhoneycomb-coresandwichpanelshavingsamespecificweight.

kz kzu (symmetric) kz_ (antisymmetric)

Truss-core Honeycomb-core Truss-core Honeycomb-core Truss-core Honeycomb-core

sandwich panel sandwich panel sandwich panel sandwich panel sandwich panel sandwich panel

c casel case2 casel case2 casel case2 case1 case2 easel case2 casel case2
Q

1 3.4321 3.4321 3.0529 3.0529 5.7160 5.7160 6.0831 6.0834 6.3284 6.3284 7.3575 7.3575

2 1.5533 1.3450 1.3351 1.2943 5.0279 4.2812 4.9674 4.6761 4.9106 4.3001 4.8060 4.5747

3 1.2724 1.0620 1.1177 1.0788 4.7186 3.9598 4.5042 4.2364 4.7496 3.9186 4.5115 4.2163

4 1.1799 0.9709 1.0495 1.0117 4.7497 3.8200 4.4070 4.0988 4.7148 3.8605 4.4279 4,1417

Figures 14 through 17 show the buckling interaction curves plotted in the stress-ratio spaces for the truss-core
c 1,2, theand honeycomb-core sandwich panels of different core orientations, respectively. For the aspect ratios _ =

buckling interaction curves for the two types of panels are continuous curves. However, for c = 3,4, the buckling
interaction curves in figures 14 through 17 are discontinuous composite curves constructed from symmetric and

antisymmetric buckling interaction curves. Those buckling interaction curves in the stress-ratio space for the two

types of sandwich panels may be described by the following mathematical equations shown in table 3.

Table 3. Equations for describing buckling interaction curves in stress-ratio space.

Truss-core

sandwich panel

_c.c case 1 case 2 case 1

Honeycomb-core

sandwich panel

case 2

1 Rz + Rz2b°4 ,_ I Rz +/:?1 92

R2.86 R2.29

3 Discontinuous curve Discontinuous curve

4 Discontinuous curve Discontinuous curve

/:?2.52

Discontinuous curve

Discontinuous curve

R1.98
Rz + -.z_ ,_ 1

I72 39Rz + ..z_ ,-_ 1

Discontinuous curve

Discontinuous curve
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Figure 14. Buckling interaction plots in stress ratio space for truss-core sandwich panels of different aspect ratios.

N_ is parallel to the corrugation axis.
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Figure 15. Buckling interaction plots in stress ratio space for truss-core sandwich panels of different aspect ratios.
Nz is perpendicular to the corrugation axis.
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Figure 16. Buckling interaction plots in stress ratio space for honeycomb-core sandwich panels of different aspect
ratios. Case 1 core orientation.
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7 CONCLUDING REMARKS

Combined-load buckling analysis was performed on the truss-core and honeycomb-core sandwich panels having

the same specific weight, and the combined-load buckling interaction curves were generated for these two types of

sandwich panels with different panel aspect ratios and different core orientations. The results of the analysis arc

summarized in the following

. The infinite number of simultaneous characteristic equations for calculating the shear buckling load compo-

nents could be cut off at 12 (i.e., order of matrix 12) to yield sufficiently accurate eigenvalue solutions for

shear buckling loads.

. For square sandwich panels of both types, only the symmetric buckling will take place. For a panel aspect ratio

greater than one, both symmetric and antisymmetric bucklings will take place. The antisymmetric buckling

will occur when the combined loading is shear dominated.

3. The buckling interaction curves in the stress ratio space for both types of sandwich panels are continuous

curves for low-panel aspect ratios, but become discontinuous composite curves at higher panel aspect ratios.

4. The square-shaped sandwich panel (any type) has the highest combined-load buckling strength, and the combined-

load buckling strength decreases sharply as the panel aspect ratio is increased.

5. For a square sandwich panel (any type) the core orientation has no effect on pure compressive and pure shear

buckling strength, but has negligible effect on the combined-load buckling strength. When the panel aspect

ratio is increased, the effect of core orientation on the combined-load buckling strength becomes conspicuous.

6. For square sandwich panels, the truss-core sandwich panels (two core orientations) have higher buckling

strength than the honeycomb-core sandwich panels (two core orientations) when the combined loading is

compression dominated. The reverse is true when the combined loading is shear dominated.

. For an aspect ratio greater than one, the two buckling interaction curves of honeycomb-core sandwich panels

of two core orientations practically lay between the two buckling interaction curves of truss-core sandwich

panels of two core orientations.
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APPENDIX

FLEXURAL, TWISTING, AND TRANVERSE SHEA R STIFFNESSES

The flexural stiffnesses Dz and D r, the twisting stiffness Dxu, and the transverse shear stiffnesses DQ_ and

Dqv of the truss-core and honeycomb-core sandwich panels are written in the following for anisotropic face sheet

material and isotropic core material.

Truss-core sandwich panel, case 1 core orientation

Dz = Ez/_ + Ej¢ (A-l)

Dr = Euls Gh _,_ (A-2)
1 + ( 1 - v_vvv_)

D_ v = 2 G_vI_ (A-3)

Gctch2 (A-4)
DQz = p_

DQv : Sh 1E_v2c_ \-_/(tc x)3 (A-5)

In the above equations, {E_, Ev, G_ v, v_v, vv_} and {E¢, Go vc} are the elastic constants associated, respectively,

with the anisotropic face sheet material and the isotropic truss-core material, h is the depth of the sandwich panel, p

is one half of the corrugation pitch, ts is the thickness of the upper and lower face sheets, tc is the final thickness of

the core sheet after superplastic expansion and is related to the original core sheet thickness ty through (figs. 1, 5)

P - f )-_ t_, cos 0 (A-6)
t¢ = ty _-'-f

where f is the length of corrugation leg horizontal flat segment, 0 is the corrugation angle, and hc in equation (A-5)

is the depth of the corrugation defined as

h¢ = h - (G + tf) (A-7)

and finally, e is the length of corrugation leg expressed as

g = f + 2(d + RO) (A-8)

where d is one half the length of the corrugation leg diagonal segment, and R is the radius of the circular arc segments

of the corrugation leg (fig. 5).

In equations (A-l) and (A-2), Is is the moment of inertia of the face sheets taken with respect to the centroidal
axis of the sandwich panel, and ic is the moment of inertia of the corrugation leg taken with respect to the corrugation

core centroidal axis (parallel to y axis). The expressions for I, and i¢ are given in the following

1 3Is = t_h 2 + -_t_

,c= h3t---A{ 1 ftf(1p 4 hc tc

R

+ _'_f,] + _-_33 sin2 0+ _-_-cos 2 0

(A-9)

hc2 sin 0(1- cos 0) - _c 2- _cc (0-sin0) (A-10)
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Thenondimensionalshearstiffnesscoefficient,._appearinginequation (A-5) is defined as (refs. 13, 19)

6_De_+nz le (h'P'_c)2
3=

12 {h_hc.P_DR_- 2 \hc,('r--'_EDH+_-_ [6 _,=(D_D_-Dff2)+ (h_) 3 Dffl }

where the nondimensional parameters D_, Dff, and Dff are defined as

2<d>,2, [8<p<b/,1D=_=_ _ cos20+_77 _ -

R[ (L_20 4Rb (R)+_c 2 - (1 -cos0) +

+ hc-_tc 2_-_csin 0+_c(0-sin0cos0)

, ](0 - sin 0 cos 8)

(A-11)

(A-12)

<) ( '2 d 3 1 R0 _LA]
Dff = -_ -_c sin20+2" _c + 2 hc If ,]

- (ff_)z [(2 - 3ff-_) (0 - sin 0) + ff-_csin 0(1 - cos 0)]

+ _ lh_t/+ 2 _--_cos 28+ hc
(A-13)

2 (d) 3 11_ [¼(P) z (b) 2]Dff=7 _ sin0cos0+ 77-f _ -

+h"_(h_RbO_2h_(0_sin0)_ R<l_cos0)[l_ff_(l_cos0)])h,

h_tc 2 _ sin 0cos 0 + _ sin 2 0 (A-14)

where b(= ½(p - f)) is one half of the horizontal projected length of the nonhorizontal region of the corrugation

leg (fig. 5), and the moments of inertia I I and I_ of the flat and diagonal regions of the corrugation leg are defined
respectively as

1 3 1 3
ss=7_ts , s_=_-t_

In case 2 core orientation, subscripts x and y in equations (A-l) through (A-5) are interchanged.

Honeycomb-core sandwich, case 1 core orientation

D_ = E_h

D_ = E_/_

Dx_ = 2Gz_l,

DQ_ = G_,h'c

DQu = G_h'_

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)
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whereh i is the honeycomb-core depth (fig. 2) defined as

h'c= h-ts

In case 2 core orientation, subscripts x and y in equations (A-16) through (A-20) are interchanged.

(A-21)
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